Adaptive computations on conforming quadtree meshes
نویسندگان
چکیده
In this paper, the quadtree data structure and conforming polygonal interpolants are used to develop an h-adaptive finite element method. Quadtree is a hierarchical data structure that is computationally attractive for adaptive numerical simulations. Mesh generation and adaptive refinement of quadtree meshes is straight-forward. However, finite elements are non-conforming on quadtree meshes due to level-mismatches between adjacent elements, which results in the presence of so-called hanging nodes. In this study, we use meshfree (natural-neighbor, nn) basis functions on a reference element combined with an affine map to construct conforming approximations on quadtree meshes. Numerical examples are presented to demonstrate the accuracy and performance of the proposed h-adaptive finite element method. 2005 Elsevier B.V. All rights reserved.
منابع مشابه
Polygonal Interpolants: Construction and Adaptive Computations on Quadtree Meshes
Abstract. In this paper, recent advances in meshfree approximations, computational geometry, and computer graphics are described towards the development of polygonal interpolants. A particular and notable contribution is the use of meshfree (Laplace) basis functions that are based on the concept of natural neighbors. These are defined on a canonical element and an affine map is used to construc...
متن کاملDiamond-based models for scientific visualization
Title of dissertation: DIAMOND-BASED MODELS FOR SCIENTIFIC VISUALIZATION Kenneth Weiss, Doctor of Philosophy, 2011 Dissertation directed by: Professor Leila De Floriani Department of Computer Science Hierarchical spatial decompositions are a basic modeling tool in a variety of application domains including scientific visualization, finite element analysis and shape modeling and analysis. A popu...
متن کاملExistence and construction of Hamiltonian paths and cycles on conforming tetrahedral meshes
This paper addresses the existence and construction of Hamiltonian paths and Hamiltonian cycles on conforming tetrahedral meshes. The paths and cycles are constrained to pass from one tetrahedron to the next one through a vertex. For conforming tetrahedral meshes, under certain conditions which are normally satisfied in finite-element computations, we show that there exists a through-vertex Ham...
متن کاملQuadtree and Octree Grid Generation
Engineering analysis often involves the accurate numerical solution of boundary value problems in discrete form. Hierarchical quadtree (or octree) grid generation offers an efficient method for the spatial discretisation of arbitrary-shaped two- (or three-) dimensional domains. It consists of recursive algebraic splitting of sub-domains into quadrants (or cubes), leading to an ordered hierarchi...
متن کاملOctasection-based Refinement of Finite Element Approximations on Tetrahedral Meshes that Guarantees Shape Quality
Adaptive refinement of finite element approximations on tetrahedral meshes is generally considered to be a non-trivial task. (We wish to stress that this paper deals with mesh refinement as opposed to remeshing.) The splitting individual finite elements needs to be done with much care to prevent significant deterioration of the shape quality of the elements of the refined meshes. Considerable c...
متن کامل